

Ultrasound Assisted Copper (I) Catalyzed Conjugate Addition of Heterocyclic bromides to 1, 1-Diacetate

Ashok S. Pise¹, Arvind S. Burungale^{2*}, Ramesh B. Gawade², Santosh S. Devkate², Sunil D. Jadhav³, Mohan B. Kale³

¹Department of Chemistry, Dada Patil Mahavidyalaya, Karjat, Ahmednagar, Maharashtra, India ²Department of Chemistry, S. M. Joshi College Hadapsar, Pune, Maharashtra, India ²Department of Chemistry, Mahatma Phule Mahavidyalaya, Panvel, Raigad, Maharashtra, India

ABSTRACT

1,1-Diacetate was prepared from cinnamaldehyde and acetic anhydride by reported method. The conjugated addition products were synthesized from heterocyclic bromides and 1,1-diacetate in the presence of 10 mol % Cu (I) catalyst in high yields within 15-25 min. under ultrasound irradiation.

Keywords: Conjugate addition, Diacetate, Cu (I) catalyst, Heterocyclic bromides, Ultrasound irradiation.

I. INTRODUCTION

The protection of aldehydes by the formation of 1,1diacetate is very important in synthetic organic chemistry because of the easy conversion of products into the parent aldehydes.¹⁻⁴ The 1,1-diacetates were synthesized from aldehydes and acetic anhydride using different catalyst such as sulfuric acid,⁵ Nafion-H,6 zinc chloride,7and phosphorus trichloride.8 The sonochemical addition of alkyl halides to α , β unsaturated carbonyl compounds and nitriles in the presence of a zinc-copper couple in aqueous medium has been developed.9 Organozinc reagents are very important in organometallic chemistry for easy formation of products and transmetalation.¹⁰⁻¹³ The organozinc halides are undergo transmetalation by transition metal salt or complex such as copper, palladium, nickel, cadmium etc. 13-17 The coupling reactions such as Suzuki, Still, Grignard and Negishi are catalyzed by transition metal.¹⁷⁻²⁴ The coupling of aryl bromide to acyl chloride and opening of epoxide have been developed for the formation of new carbon-carbon bond.²⁵⁻²⁶ The formation of new carbon-carbon bond between aryl bromides and α , β unsaturated carbonyl compounds is very difficult. But

we have developed one method for the formation of carbon-carbon bond by insertion of zinc metal in aryl bromide In present work, we have synthesized different conjugated addition product using heterocyclic bromides and 1,1-diacetate in the presence of Cu (I) catalyst (Cu(MeCN)₄BF₄) at room temperature within 15-25 min. under ultrasound irradiation.

II. METHODS AND MATERIALS

The starting materials were purified before reactions. The sonochemical experiments were carried out in an ultrasonic cleaner with frequency of 33 KHz and a normal power of 250 W. The IR spectra were recorded on a Shimadzu Miracle 10 ATR. The products were analyzed by ¹HNMR. ¹HNMR spectra were recorded on a Bruker 500 MHz with CDCl₃ as the solvent with TMS as an internal standard. The reaction progress was monitored by TLC using pet. ether/hexane as the mobile phase. The spots were visualized using UV cabinet. Crude products were purified by column chromatography using pet. ether/ethyl acetate as a solvent.

Procedure for preparation of Reike Zinc metal:-

In a 100 ml two neck RBF was flushed by nitrogen. A mixture of 0.05 gm lithium metal. 0.1 gm naphthalene and 5 ml THF was stirred at room temperature to observed dark green colour solution, then 5 ml saturated solution of ZnCl₂ in THF was added to above dark green colour solution by syringe and mixture was sonicated for 30 min. the black grey colour zinc metal observed in RBF.

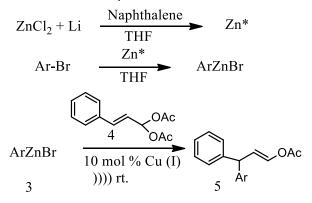
Typical procedure for preparation of Aryl zinc bromide and conjugate addition to 1,1-diacetate:-

5 ml saturated solution of LiCl in THF and 5 mmol aryl bromide in 2 ml THF was added in zinc metal solution, then sonicated for 30 min, the formation of organozinc takes place, it was confirmed by TLC. Finally, 5 mmol 1,1-diacetate in 2 ml THF & 10 mol % Cu (I) catalyst were added in reaction mixture. The reaction mixture was sonicated for 15-25 min. at room temperature. After completion of reaction, saturated NH4Cl solution was added (2x5 ml), washed with brine solution (10 ml) and dried over Na₂SO₄. The extract was then concentrated and the crude product was purified using column chromatography (silica gel 20% EtOAc/80% pet ether) to afford pure compound. Products are easily identified by comparison of their spectroscopic data.

Spectral data of Products:

5a: IR (ν cm⁻¹) 2958 (Aromatic C-H), 1761 (-COO), 1668 (C=N), 1500-1650(C=C), ¹HNMR (500 MHz, CDCl₃) δ 2.1 (s, CH₃ 3H), 4.1(d, 5Hz, 1H), 6.5(d, *J*=7 Hz, 1H), 6.9(d, *J*=7 Hz, 1H) 7.2-8.3 (m, 9 H, ArH) ppm.

5b: IR (v cm⁻¹) 2954 (Aromatic C-H), 1762 (-COO), 1500-1650 (C=C), ¹HNMR (500 MHz, CDCl₃) δ 2.1 (s, CH₃ 3H), 4.2(d, 5Hz, 1H), 6.5(d, *J*=7 Hz, 1H), 6.9(d, *J*=7 Hz, 1H) 7.2-8.3 (m, 8H, ArH) ppm.


5c: IR (v cm⁻¹) 2980 (Aromatic C-H), 1759 (-COO), 1500-1650 (C=C),3320 (-NH) ¹HNMR (500 MHz, CDCl₃) δ 2.1 (s, CH₃ 3H), 4.1(d, 5Hz, 1H), 6.5(d, *J*=7 Hz 1H), 6.8(d, *J*=7 Hz, 1H) 7.2-8.5 (m, 10H, ArH) ppm.

5d: IR (v cm⁻¹) 2984 (Aromatic C-H), 1762 (-COO), 1671 (C=N), 1500-1650 (C=C), ¹HNMR (500 MHz, CDCl₃) & 2.1 (s, CH₃ 3H), 4.2(d, 5Hz, 1H), 6.4(d, *J*=7 Hz 1H), 6.7(d, *J*=7 Hz, 1H) 7.2-8.4 (m, 8H, ArH) ppm. **5e:** IR (v cm⁻¹) 2978 (Aromatic C-H), 1755 (-COO), 1673 (C=N), 1500-1650 (C=C), ¹HNMR (500 MHz, CDCl₃) & 2.1 (s, CH₃ 3H), 4.2(d, 5Hz, 1H), 6.6(d, J=7 Hz 1H), 6.9(d, *J*=7 Hz, 1H) 7.2-8.5 (m, 7H, ArH) ppm. 5f: IR (v cm⁻¹) 2988 (Aromatic C-H), 1758 (-COO), 1667 (C=N), 1500-1650 (C=C), ¹HNMR (500 MHz, CDCl₃) δ 2.1 (s, CH₃ 3H), 4.1(d, 5Hz, 1H), 6.4(d, *J*=7 Hz 1H), 6.9(d, *J*=7 Hz, 1H) 7.2-8.6 (m, 7H, ArH) ppm. 5g: IR (v cm⁻¹) 2987 (Aromatic C-H), 1763 (-COO), 1668 (C=N), 1500-1650 (C=C), ¹HNMR (500 MHz, CDCl₃) & 2.17 (s, CH₃ 3H), 4.1(d, 5Hz, 1H), 6.5(d, J=7 Hz 1H), 6.9(d, *J*=7 Hz, 1H) 7.2-8.4 (m, 6H, ArH) ppm. **5h:** IR (v cm⁻¹) 2978 (Aromatic C-H), 1760 (-COO), 1678 (C=N), 1500-1650 (C=C), ¹HNMR (500 MHz, CDCl3) & 2.1 (s, CH3 3H), 4.1(d, 5Hz, 1H), 6.5(d, J=7 Hz 1H), 6.9(d, *J*=7 Hz, 1H) 7.2-8.3 (m, 11H, ArH) ppm.

III. RESULTS AND DISCUSSION

Scheme 1. Synthesis of 1,1-diacetate

Scheme 2. Conjugate addition of Ar group.

Entry	Ar-Br	irradiation. Product	Time, min.	Yield %
5a	€ N Br	OAc N	17	85
5b	⟨_s↓ _{Br}	OAc S	20	82
5c	Br	OAc N.H	22	78
5d	N L N	OAc N N	16	89
5e	S Br	OAc NS	21	85
5f	N _O Br	OAc O-N	24	91
5g	_{O₂N}		20	85
5h	Br	OAc N	18	86

Table 1. Copper (I) catalyzed Conjugate addition of aryl zinc bromide to 1,1-diacetate under ultrasound irradiation.

From the table 1 We have observed that Cu(MeCN)₄BF found to be best catalyst for the conjugated addition reactions and excellent yields were obtained.

IV. CONCLUSION

A simple, rapid and inexpensive procedure has been developed for conjugative addition of heterocyclic bromides to 1,1-diacetare under ultrasound irradiation which can be a useful alternative to existing methods. The products were isolated in good to excellent yields after 15-25 min. sonication at room temperature. The results of sonochemical experiments were just slightly better than that in the classical reactions.

V. ACKNOWLEDGMENTS

The author thanks to the Central Instrumentation Facility, Savitribai Phule, Pune University and DST-FIST sponsored Central Instrumentation Laboratory, Dada Patil Mahavidyalaya Karjat Dist. Ahmednagar for the spectral analysis.

VI. REFERENCES

- C. Narayana, S. Padmanabhan and G. W. Kabalka, Tetrahedron Lett, (1990),31, 6977.
- [2]. R. S. Varma, A.K. Chatterjee and M. Varma Tetrahedron Lett, (1993), 34, 3207.
- [3]. R. G. Sudhakar, R. Radhika, N. Parvathi & D. S. Iyengar, Indian J. Chem. (2002), 41B. 863.
- [4]. K. S. Kochhar, B. S. Bal, R. P. Deshpande, S. N. Rajadhyaksha & H. W. Pinnick, J. Org. Chem,(1983), 48, 1765.
- [5]. F. Freeman & E. M. Karchefski, J. Chem. Eng. Data, (1997), 22, 355.
- [6]. G. A. Olah, & A. K. Karcherski, Synthesis, (1982), 962.
- [7]. I. Scriabine, Bull Chim Soc Fr. (1961), 1194.

- [8]. J. K. Michie & J. A. Miller, Synthesis, (1981), 824.
- [9]. C. Dupuy, C. Petrier, L. A. Sarandeses & J. L. Luche, Synth. Commun. (1991), 21, 643.
- [10]. P.Knochel Handbook of Functionalized organometallics Wiley-VCH ISBH 3-527-31131-9 Vol. 1 Chapter 7, (2005).
- [11]. Paul Knochel, Juan J., Almena Perea and Philip Jones Tetrahedron, (1998), 54, 8275-8319.
- [12]. E. Negishi Organometallics in Organic Synthesis, Vol. 1 Wiley New York, (1980).
- [13]. I. Antes, G. Frenking, Organometallics, (1995), 14, 4263.
- [14]. United States Patent US005756653A Patent number 5756653 26 May (1998).
- [15]. B. H. Lipshutz, S. Seugepta Org. React. (1992), 41, 135.
- [16]. B. H. Lipshutz, P.A. Blomgren, S. K. Kim Tetrahedron Lett. (1999), 40, 197.
- [17]. C. Dai, G. C. Fu, J. Am. Chem. Soc. (2001), 123, 2719.
- [18]. J. Z. Deng, D. V. Pone, A. T. Ginnetti, Kurihara H. S. D Dreher Org. Lett. (2009), 11, 345-347.
- [19]. Voisin-Chiret, A. S. Bouillon, A. Burzicki, G. Celant, M. Tetrahedron, (2009), 65, 607-612.
- [20]. Schwab P. F. H. Fleischer F. Michl J. J. Org. Chem. (2002), 67, 443-449.
- [21]. J. J. Song, N. K. Yee, Z. Tan, J. Xu, S. R. Kapadia, C. H. Senanayake Org. Lett. (2004), 6, 4905-4907.
- [22]. X. F. Duan, Z. Q. Ma, F. Zhang Z. B. J. Zhang Org. Chem. (2009), 74, 939-942.
- [23]. Y. Q. Fang, G. S. Hanan Syn. Lett. (2003), 852-854.
- [24]. Y. A. Getmanenko, R. J. J. Twieg Org. Chem. (2008),73, 830-839.
- [25]. A. S. Burungale, R. B. Gawade, A. S. Pise, S. S. Devkate and S. D. Jadhav IJSRST(2017), 3, 9, 90-94.
- [26]. S. S. Devkate, A. S. Burungale, S.D Jadhav, A. S.
 Pise, R. B. Gawade and M. B. Kale, IJSRST(2017), 3, 8, 998-1001.